Impact of Intensified Weather Extremes on Europe's Economy

Initiative: Europe and Global Challenges

Bewilligung: 06.04.2017

Laufzeit: 4 Jahre

Weather extremes are expected to intensify under future warming. In a globalized world, Europe’s economy will be impacted directly by recurring regional extreme weather events such as the 2013 flooding or the 2003 heatwave, but also indirectly through its economic connectedness with the rest of the world. This project investigates the impacts of intensified weather extremes on Europe’s economy under different climatic and socio-economic futures and develops and assesses possible adaptation strategies at the company, the national and the EU level. To this end, the impact of heatwaves, floods and tropical storms as well as possible developments of Europe’s economy and trade relations until 2050 will be projected. Based on these projections, the direct and indirect effects on Europe’s economy will be assessed using a numerical model of economic loss propagation. The model will be calibrated by hindcasting recent weather extremes. Overall, the project addresses the combined impact of two major global challenges of the 21st century - climate change and economic connectedness - and provides solution strategies with strong global implications.

Projektbeteiligte

Prof. Anders Levermann
Potsdam-Institut für Klimafolgenforschung e. V.
Forschungsbereich Komplexitätsforschung
Potsdam

Dr. Leonie Wenz
Potsdam-Institut für Klimafolgenforschung e. V.
Complexity Science
Potsdam

Prof. Dr. Maximilian Auffhammer
University of California - Berkeley
Berkeley
USA
Prof. Dr. Manfred Lenzen
University of Sydney
School of Physics
Integrated Sustainability Analysis (ISA)
Sydney
Australien

Prof. Dr. Adam Sobel
Columbia University in the
City of New York
Lamont-Doherty Earth Observatory
Palisades, NY
USA

Open Access-Publikationen

The Impact of Climate Conditions on Economic Production. Evidence from a Global Panel of Regions
Decay radius of climate decision for solar panels in the city of Fresno, USA
Footprint of greenhouse forcing in daily temperature variability
A scenario-based method for projecting multi-regional input-output tables
Day-to-day temperature variability reduces economic growth