Daten zum Projekt
Initiative: | Integration molekularer Komponenten in funktionale makroskopische Systeme (beendet, nur noch Fortsetzungsanträge) |
---|---|
Bewilligung: | 02.12.2015 |
Laufzeit: | 3 Jahre |
Projektinformationen
The goal of this project is to develop a new nanophotonics based platform for neuro-inspired information processing. Dense arrays of semiconductor microlasers and single photon sources with quantum dots in the active layer will take a role comparable to neurons in the brain. Neuron-connectivity is being established via diffractive coupling by an external spatial light modulator. Similar to the brain's primary sensory cortex, computation is provided by induced macroscopic network-dynamics, which allows for efficient information processing with diverse applications such as pattern classification, nonlinear prediction and ultra-fast control loops. A particularly attractive aspect of the scheme is that it merges the inherently parallel concepts of reservoir computing and photonics within a compact and scalable physical machine learning implementation. As such, an ultra-fast (GHz bandwidth) and versatile platform complementary to recent large-scale electronic approaches (e.g. human brain project, IBM or Google) will be developed.
Projektbeteiligte
-
Prof. Dr. Stephan Reitzenstein
Technische Universität Berlin
Fakultät II
Institut für Festkörperphysik
Sekretariat EW 5-3
Berlin
-
Daniel Brunner, Ph.D.
CNRS - Centre National de la Recherche
Scientifique
Département d'Optique
Institut FEMTO-ST
UMR CNRS 6174
Office N1-BUR-04
Besancon (cedex)
Frankreich
Open Access-Publikationen
-
Developing a photonic hardware platform for brain-inspired computing based on 5 x 5 VCSEL arrays
-
Development of Highly Homogenous Quantum Dot Micropillar Arrays for Optical Reservoir Computing
-
Reinforcement learning in a large-scale photonic recurrent neural network
-
Boolean learning under noise-perturbations in hardware neural networks